MODEL THEORY 2024

EXAM FAC SIMILE

Exercise 1.

- Define the set of (complete) (1)-types of a theory.
- For a theory \mathbb{T} what does it mean to admit quantifiers elimination?
- Define elementary embeddings.

Exercise 2. Recall that a theory is \aleph_0 -categorical if it has only one model of cardinality \aleph_0 up to isomorphism. List at least two \aleph_0 -categorical theories (over some finite first order language). Is the theory of algebraically closed fields \aleph_0 -categorical?

Exercise 3. Consider two theories $\mathbb{T} \subset \mathbb{T}'$ over the same language, and assume that \mathbb{T}' extends \mathbb{T} . Every *n*-type over \mathbb{T}' is also an *n*-type over \mathbb{T} . This gives us a function between spaces of types $\operatorname{tp}^n(\mathbb{T}') \to \operatorname{tp}^n(\mathbb{T})$. We say that \mathbb{T}' is a conservative extension if every formula provable in \mathbb{T}' is also provable in \mathbb{T} .

Show that this function is continuous and prove that if \mathbb{T}' is a conservative extension of \mathbb{T} then the function is surjective.

Exercise 4. Let us start with a brief definition. We say that an element *b* of *M* is *algebraic* over a subset $A \subset M$ if *b* belongs to a finite *A*-definable set, i.e. there exists a formula $\phi(x)$ (with parameter in *A*) such that $\phi(x)$ has a finite number of solutions in *M* and *b* is one of them. For a set *A* we define its algebraic closure acl(*A*) to be the set of elements that are algebraic over *A*.

Show that if M is an ω -saturated model, then there exists no finite subset A whose algebraic closure is the whole M.